

If $X\left(t_{1}\right)$ is independent of $X\left(t_{2}\right)$ whenever $t_{1} \not t_{2}$, then $X(t)$ is "noise"

$$
\begin{aligned}
& \text { Lat } X=X\left(t_{1}\right)+Y=X\left(t_{2}\right) \text {. } \\
& y_{\text {r }} f_{x}(x) \\
& f_{y}(y) \\
& \text { joit } f_{x y}(x, y)=f_{x}(x) f_{y y}\left(y y_{x}\right)
\end{aligned}
$$

$$
\begin{gathered}
X=X\left(t_{1}\right) \\
y=X\left(t_{2}\right) \\
z=X\left(t_{3}\right) \\
f_{x x z}(x, y, z)=\cdots x_{1,}, \cdots z .
\end{gathered}
$$

