I- dimensional Gaussian iistribution $N(\mu, \sigma)$

$$
\frac{1}{\sqrt{2 T} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

2-D Gussiun p.191

$$
\begin{aligned}
& f_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-p^{2}}} e^{-\frac{1}{2\left(1-p^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)+\left(\frac{y \beta_{2}}{\sigma_{2}}\right)-2 \% \rho\right.} \\
& \left.\quad \cdots \frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right] \\
& \quad(\text { cont }) e^{x^{2}, y_{1}^{2} x y_{1} x_{1} y_{1} \text { cont }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1-1)}{P_{v}, b}(a<x<b)=\int_{a}^{b} f_{x} W d x \\
& \frac{2-D}{\operatorname{Prat}}(a<x<b \text { aal } \alpha<y-b)=\int_{a}^{b} \int_{c}^{d} f_{x, y}(x, y) d y d y \\
& \varepsilon(x)=\mu_{1}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{x y}(x, y) d y d y \\
& \varepsilon(y)=\mu_{2}=\iint y f_{x y} \\
& \varepsilon\left(x^{2}\right)=\iint_{x} x^{2} f_{x y} \cdots \\
& \sigma_{1}^{2}=\varepsilon\left[\left(x-\mu_{1}\right)^{2}\right]=\varepsilon\left[x^{2}\right]-\mu_{1}^{2}
\end{aligned}
$$

Marginal Distribations
Prof ($a<x<b$ and y is angthing)

$$
=\int_{r=a}^{b} \int_{y=-\infty}^{\infty} f_{x, y}(\lambda, y) d y d x
$$

mariundon $x: f_{x}(x)=\int_{y=\infty}^{\infty} f_{x,}(x, y) d y$

Fact The margind derity furction for the 2-D Gaussion
is the $1 \rightarrow$ Gaussion

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{1}{\pi \sigma_{1} \sigma_{2}} e^{\left.-\frac{1}{2\left(1 p^{2}\right)}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho \frac{\left(x-\mu_{1}\right)\left(\mu^{\prime} \mu_{1}\right)}{\sigma_{1} \sigma_{2}}\right] d y \\
=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}}
\end{gathered}
$$

Incidental Remark:
You can witte the biliner fom, in -he 2-D exponentid, in a metrix form:

$$
-\left[\begin{array}{ll}
x-\mu_{1} & y-p_{2}
\end{array}\right]\left[\begin{array}{ll}
X & X \\
X & X
\end{array}\right]\left[\begin{array}{l}
x-\mu_{1} \\
y-\mu_{2}
\end{array}\right]
$$

Conditional probability.

$$
\begin{aligned}
& P(A, \text { given } B) \underset{\substack{\text { IF } A d \text { Bare ind pendent, } \\
\text { This is the ant. }}}{\text { as }} \\
& \begin{array}{l}
\text { This is the same } \\
\text { as } P(A) \text { given }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Basicsule: } \\
& P(B) P(A \mid B)=P(A+B)=P(A) P(B \mid A) \\
& P(B \mid A)=\frac{P(A+B)}{P(A)} \\
& \text { conditional }=\frac{\text { joint }}{\text { marginal }} \\
& P(B \mid A)=P(A \mid B) P(B) / P(A) \\
& \text { ancailf Bayer' The. } \\
& \text { IF } A \times B \text { are indepradont, } \\
& P(A \times B)=P(A) P(B)
\end{aligned}
$$

Fact: for density functions,

$$
\text { conditional }=\frac{\text { joint }}{\text { marginal }}
$$

$$
\begin{aligned}
& \text { conolitional } \\
& f_{X \mid Y}(x ; y) d x=\frac{f_{X Y}(x, y) d x d y \text { corrected }}{f_{Y Y}(y) d y} \text { lecture } \\
& f_{X \mid Y}(x ; y=y) d x
\end{aligned}
$$

(Trust me)

$$
f_{X \mid Y}(x ; y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

$$
f_{X \mid Y}(x ; y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

For the Ganssian
LHS to be $\}$ will timoñ to be determined yaussion in x

$$
\rho^{.193,4} \quad N\left(\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right), \sigma_{1} \sqrt{1-\rho^{2}}\right)
$$

$$
\begin{aligned}
& f_{X \mid Y}(x ; y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NGTE: if } \rho=0 \quad x+y \text { areimblependent } \\
& \text { becoure } \\
& f_{x y}=\frac{1}{2 \pi 0, \sigma_{2}} e^{\left.-\frac{y\left(x-\mu_{1}\right.}{\sigma_{1}}\right)^{2}} e^{-\frac{1}{2}\left(\frac{y-y_{2}}{\sigma_{2}}\right)^{2}}
\end{aligned}
$$

