Rendrm Proens $X(-t)$

Continuity of $X(t)$

" $X(t)$ is contiminowi if $X(t) \rightarrow X\left(t_{0}\right)$ ar $t \rightarrow t_{0}$, with porlability one,"

$$
\sum\left\{\left[\lim _{t \rightarrow t_{0}} x(t)-x\left(t_{0}\right)\right]^{2}\right\}=0
$$

" $X(t)$ is rem-gure continuoun," (at t_{0})
" $X(t)$ is mem-quare differentitte (at $\left.t_{0}\right)^{\prime}$

$$
\varepsilon\left\{\left(\frac{X\left(t_{0}+0\right)-X(t)}{\Delta t} \cdot X^{\prime}\left(t_{0}\right)\right)^{2}\right\}=0
$$

Title: Sep 22-12:06 PM (2 of 11)

This ionone is stationary.

$f_{X(t)}(x)$ does not depend on t.

Title: Sep 22-12:26 PM (5 of 11)

I/X (t) in continuoue a $t, \approx t_{2}$, then $X\left(t_{1}\right) \approx X\left(t_{2}\right)$ almost certaing.

So, it is not versuancble to demend $f_{X\left(H_{1}\right)}\left(x_{1}\left(t_{2}\right), x_{2}\right)$ be indepondent of $t_{1}+$ of t_{2}. Insterd,

$$
f_{x\left(t_{1}\right), x\left(t_{2}\right)}\left(x_{1}, x_{2}\right) \text { depende ond on }\left(t_{1}-t_{2}\right) \text {. }
$$

$$
\begin{aligned}
& \varepsilon[X(t)]=\mu \\
& \varepsilon\left[X(t)^{2}\right]=\overline{X^{2}(X)} \sigma X X \\
& \varepsilon\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \text { duptan }\left(t,-t_{2}\right)
\end{aligned}
$$

Fact l. Indeprondence im plie anto covariance $=0$.
(Remember antocov = outo cuir. if process is zero-mean.)
Fact 2. Zerd autorov ANA Gaussian implies independence

Stationary process
$E\left[\left(X\left(t_{1}\right)-\mu\right)\left(X\left(t_{2}\right)-\mu\right)\right]=R_{x}(\tau)$
deperde arey on $t_{1}-t_{2}=" \tau$ ".
"autocorecelition" ro "autocavarince".
Cctuclin, thin only departi on $\left|t_{1}-t_{2}\right|$.

Homeark.

$$
\begin{gathered}
R_{x}(\tau)=\frac{\cos \pi \tau}{\tau^{2}+1} \begin{array}{c}
\text { must be } \\
\begin{array}{c}
\text { an even } \\
\text { furction. }
\end{array} \\
\tau^{3}+1 \\
\sin \pi \tau \tau \\
e^{-\tau} \text { inproitle }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
R_{x}(\tau) & =E[X(t) X(t+r)] \\
& =E[(X(t)-\mu)(X(t r)-\mu)] \\
R_{X}(0) & =\sigma^{2} \\
\rho(\tau) & =\frac{R_{X}(r)}{R_{x}(0)}
\end{aligned}
$$

