Kalman:
You have an extimite of the prerove value \hat{d} unbicasel, estimete erar $E\left[e_{0}^{2}\right]$.
You have a moslel of how the haw value evalven:

$$
d_{\text {hew }}=a d_{o s}+v_{1}^{\text {(none) }}
$$

You hare a noig measuremer of $d_{\text {new: }}$:

$$
x_{\text {naw }}=d_{\text {nuw }}+v_{2} \text { noine }
$$

Moaliextinte $d_{\text {new }}$:
(1) Use model:

$$
\hat{d}_{n_{m}}=a \hat{d}_{0} d
$$

(2) The measurement result:

$$
\hat{d}_{\text {new }}=x_{\text {nav }}
$$

Kalian: take a weighted avenges

$$
\begin{aligned}
\hat{d}_{\text {new }} & =K x_{\text {new }}+(1-K) a \hat{d}_{\text {old }} \\
& =a \hat{d}_{\text {oud }}+K\left[x_{\text {new }}-a \hat{d}_{\text {oud }}\right]
\end{aligned}
$$

If manswenert is perfect, $\sigma_{v_{2}}=0$, yo world use

$$
\hat{\theta}_{\text {new }}=x_{\text {new }} \quad(k=1)
$$

of measurement is loury $\sigma_{V_{2}}=\infty$, igroveit and

$$
\hat{d}_{\text {rev }}=a \hat{d}_{\text {ole }} \text {. }
$$

In general, the optimal K will depend on $\sigma_{v_{1}}$ and $\sigma_{V_{2}}$.

If you \& need to estimate the next d, you hove
(1) the preceding extionte of (you just computed it)
(2) the motel $d_{\text {nav, improved }}=b d_{\text {new }}+V_{1}^{\text {win }}$
(3) wow measurement $x_{\text {nar,imparoud }}=d_{\text {nawimparod }}$ $+v_{2}$
(4) you ned $E\left[\begin{array}{l}2 \\ e_{\text {new }}\end{array}\right]$

Kalmen algorithm give you the K and the $E\left[e^{2}\right]$

Hove complicated:

$$
d_{\text {today }}=.5 d_{\text {yeteden }}+.4 d_{\substack{d_{\text {perprat }} \\ \text { yeveredes }}}+v_{1}
$$

State-space trick.

$$
d(n)=.5 d(n-1)+.4 d(n-2)+v_{1}(n)
$$

metrin fomultion $\left[\begin{array}{l}d(n) \\ d(n-1) \\ d(n-2)\end{array}\right]=\left[\begin{array}{ccc}-5 & -4 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}d(n-1) \\ d(n-2) \\ d(n-3)\end{array}\right]+\left[\begin{array}{l}v \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \vec{d}(n)=A \vec{d}(n-1)+\vec{v} \longleftarrow \\
& \text { lontentlike } d(r)=a(n-1) d(n-1)+v,(n)
\end{aligned}
$$

mearwerent

$$
\begin{gathered}
x(n)=d(n)+v_{2}(n) \\
x(n)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
d(n) \\
d(n-1) \\
d(n-2)
\end{array}\right]+v_{2}(n) \\
\vec{d}(n) \\
x=\vec{c} \vec{d}+v_{2}
\end{gathered}
$$

look like $x(n)={ }_{1}^{c} d(n)+v_{7}(n)$

The motrix Kalmon porbem haz
a a oold: $\vec{d}(n)=\stackrel{\leftrightarrow}{A}(x) \vec{d}\left(n_{-1}\right)+\vec{v}_{1}(n)$
measurement : $\quad x(n)=\vec{C}(n)^{\text {Tworrct }} \vec{d}(n)+V_{2}(n)$
Start with an untiolelestimate $\stackrel{\rightharpoonup}{d}(n-1)$ and ite eppected error: $\left(E\left\{P_{p_{-}}^{2}\right)\right] \leftrightarrow ?$

$$
[e]=[\hat{d}]-[d]
$$

$$
e^{2}=\left[\begin{array}{l}
e
\end{array}\right]\left[\begin{array}{l}
e \\
e
\end{array}\right] \quad \text { No, wat definet }
$$

thion

$$
\begin{aligned}
& e^{2}=\left[e^{\top}\right]\left[\begin{array}{l}
e \\
e
\end{array}\right] \\
& e^{2}=\left[\begin{array}{l}
e \\
e^{T}
\end{array}\right]
\end{aligned}
$$

Title: Nov 22-12:45 PM (6 of 7)

$$
\begin{aligned}
& \left.\begin{array}{rl}
=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right] \\
& =\left[\begin{array}{lll}
a^{2} & a b & a \\
b a & b^{2} & b c \\
c a & e b & c^{2}
\end{array}\right] \\
\text { So une } \delta\left[e e^{i}\right] & =\varepsilon\left\{\left[\begin{array}{lll}
e(n) \\
e(n-1) \\
e(n-2)
\end{array}\right]\left[\begin{array}{lll}
e(n) & e(n-1) & e(n-2)
\end{array}\right]\right. \\
& \\
& \\
\vdots & \varepsilon\left[e(n-1)^{2}\right]
\end{array}\right\} \\
& \xrightarrow{\text { Uhiono }}
\end{aligned}
$$

What doe $\hat{d}(n)$ look liker?
serine

$$
\hat{d}(n)=a(n-1) \hat{d}(n-1)+K[x(n)-a(n-1) ;
$$

pretiverse

$$
\begin{aligned}
\tilde{d}(n)= & A(n-1) \hat{d}(n-1)+K(n)\left[\begin{array}{r}
x(n)- \\
\\
\\
\text { everenthing in a motrin }
\end{array} \quad \hat{d}(n-1)\right]
\end{aligned}
$$

